Artificial Intelligence and IoT in Agriculture (AIoTA)

In a nearby future the world population will rise significantly, reaching 8.5 billion by 2030 and 9.7 billion in 2050. The population increase together with current and new environmental requirements, demand new agriculture production methods. Artificial Intelligence (AI) and Internet of Things (IoT) techniques will play a crucial role in current and future production technologies. The global aim of this thematic track is to bring together researchers, companies, developers and users of both AI and IoT (AI&IoT) fields applied to solve smart agriculture farming and production problems.

Application domains for AI&IoT are wide-ranging, from smart buildings through health monitoring and wearable devices to agro-forestry predictive systems. The spectrum of IoT specific devices, solutions and scientific approaches include: data acquisition by sensors and mobile devices; RF technologies used in data transmission and data collection in sensor networks; Verification and optimization techniques to help sensor networks to be maintained and operated; Big data and AI approaches provide predictive analytics and high-level correlations of data, all towards better decision support systems. This track covers the spectrum from theoretical results to concrete applications and solutions.

Topics of Interest

AI in Agriculture:

  • Data Mining; 
  • Decision Support Systems; 
  • Expert Systems; 
  • Forecasting Methods; 
  • Greenhouse Control with AI; 
  • Intelligent Control; 
  • Machine Learning; 
  • Multi-Agent systems; 
  • Modelling; 
  • Optimization;

IoT in Agriculture: 

  • Internet of Things (IoT); 
  • Instrumentation and Sensor Technology; 
  • Wireless sensor networks; 
  • Monitoring Systems; 
  • Drones; 
  • Precision Agriculture; 
  • Weather Monitoring; 
  • Navigation Systems; 
  • Smart Sensors; 
  • Sensor Fusion.

Organizing Committee

José Boaventura Cunha, INESC-TEC, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
Josenalde Barbosa, Federal University of Rio Grande do Norte, Brazil
Paulo Moura Oliveira, INESC-TEC, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
Raul Morais, INESC-TEC, University of Trás-os-Montes and Alto Douro (UTAD), Portugal

Program Committee 

Andrés Muñoz Ortega, UCAM: Universidad Católica de Múrcia, Spain
Aneesh Chauhan, Wageningen University and Research, The Netherdands
António Valente, INESC-TEC, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
Carlos Eduardo Cugnasca, Escola Politécnica da Universidade de São Paulo, Brazil
Carlos Serôdio, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
Eduardo Solteiro Pires, INESC-TEC, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
Emanuel Peres, INESC-TEC, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
Filipe Santos, INESC-TEC, Portugal
Javier Sanchis Sáez, Universitat Politècnica de València, Spain
Joaquim Sousa, INESC-TEC, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
João Paulo Coelho, Instituto Politécnico de Bragança, Portugal
Jos Balendonck, Wageningen University and Research, The Netherdands
Kazuhisa Ito, Shibaura Institute of Technology, Japan
Nieves Pávon-Pulido, Universidad Politécnica de Cartagena, Spain
Manoj Karkee, Washington State University, USA
Pedro Couto, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
Pedro Melo-Pinto, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Portugal
Tatiana Pinho, INESC-TEC, Portugal
Veronica Saiz-Rubio, Polytechnic University of Valencia, Spain
Yuxin Miao, University of Minnesota, USA